About 42,900 results
Open links in new tab
  1. Prove that sin^-1(4/5)+sin^-1(5/13)=sin^-1(63/65)? - Socratic

    Jun 26, 2018 · Please see the explanation below. Explanation: Let. #theta_1=sin^-1(4/5)# #theta_2=sin^-1(5/13)# Then,

  2. How do you use a calculator to evaluate #sin(-0.65)#? - Socratic

    Apr 1, 2017 · sin x = - 0.65 Calculator gives -> - 0.65 --> 2nd --> sin --> x = - 40^@54 Unit circle gives another x that has the same sin value:

  3. Cos65- cos5\ sin145=? - Socratic

    Apr 12, 2018 · We know that, #color(red)((1)cosC-cosD=-2sin((C+D)/2)sin((C-D)/2)# #color(blue)((2)sin(180-theta)=sin(pi-theta)=sintheta#

  4. How do you find the exact value of - Socratic

    Dec 25, 2016 · If sinA=4/5 and cosB= -5/13, where A belongs to QI and B belongs to QIII, then find sin(A+B).... See all questions in Sum and Difference Identities Impact of this question

  5. How do you evaluate #(sin^2 63 + sin^2 27)/(cos^2 17 - Socratic

    Note that #sinx=cos(90-x)# #(sin^2(63)+sin^2(27))/(cos^2(17)+cos^2(73))=(sin^2(63)+cos^2(90-27))/(cos^2(17)+sin^2(90-73))#

  6. How do you use an addition or subtraction formula to write the ...

    May 18, 2015 · How do you use an addition or subtraction formula to write the expression as a trigonometric function of one number and then find the exact value given #cos (7pi/6) cos (-pi/ 2)-sin(7pi/6)sin(-pi/2) #?

  7. How do you calculate #cos(tan^-1(4/3)-sin^-1(12/13))#? - Socratic

    Oct 13, 2016 · #cos(tan^-1(4/3)-sin^-1(12/13))# The restriction for the range of #tan^-1x # is #(-pi/2,pi/2)# and the restriction for #sin^-1x# is # [-pi/2,pi/2]#.

  8. How do you simplify #Sin[cos^-1(5/13) - cos^-1(4/5)]#? - Socratic

    May 26, 2016 · +-33/65, +-63/65. Let a = cos^(-1)(5/13). Then cos a = 5/13 > 0. a is in the 1st quadrant or in the 4th. So, sin a =+-12/13.

  9. 2sin10°sin25°+2sin10°sin45°+2sin10°sin65°? - Socratic

    Jun 15, 2018 · We will use : #2sinxsiny=cos(x-y)-cos(x+y)#. Now, #color(red)(2sin10^@sin25^@)+color(blue){2sin10^@sin45^@}+color(green)[2sin10^@sin65^@]#,

  10. How do you solve a/sin32=8/sin65? - Socratic

    Mar 11, 2018 · 4.6776097199021 Rearrange for a, in this case, multiply both sides by sin32 a=8/sin65⋅sin32 ∴a=4.6676097199021

Refresh