
How do you find the integral of #1/Sin^2 (x) + cos(2x)#? - Socratic
Jan 4, 2018 · int\\ 1/sin^2(x)+cos(2x)\\ dx=1/2sin(2x)-cot(x)+C First, I will split up the integral into two parts: int\\ 1/sin^2(x)+cos(2x)\\ dx=int\\ 1/sin^2(x)\\ dx + int\\ cos(2x)\\ dx I will call the left …
How do you differentiate y=x^2+cos^-1x? - Socratic
Jan 12, 2017 · dy/dx=2x-1/sqrt(1-x^2) The derivative of y will be the sum of the derivatives of x^2 and cos^-1x. We will find these separately. DERIVATIVE OF bb(x^2) Since you're expected to …
How do you prove 1/(1-cos)-1/(1+cos)= 2csc^2? - Socratic
May 17, 2015 · The - sign in the question should be a +. 1/(1-cos theta)+1/(1+cos theta) = (1/(1-cos theta))((1+cos theta)/(1+cos theta)) + (1/(1+cos theta))((1-cos theta)/(1-cos ...
How do you prove the identity - Socratic
Sep 9, 2016 · Prove identity Use the trig identities: 1 + cos 2a = 2cos^2 a sin 2a = 2sin a.cos a P = (2cos^2 t)/(2sin t.cos t) = (cos t)/(sin t) = cot t
How do you rewrite cos^2 x - (1/2) using double angle ... - Socratic
Apr 5, 2018 · See below. cos^2(x)-1/2 Add: (2cos^2(x)-1)/2 Identity: color(red)bb(cos(2x)=2cos^2(x)-1) Substituting: (cos(2x))/2 1/2cos(2x)
How do you prove #(1-2cos^2theta)/(sinthetacostheta ... - Socratic
Oct 7, 2016 · #(1-2cos^2theta)/(sintheta cos theta) = tan theta-cot theta# Right Side: #=tan theta-cot theta# #=sin theta/cos theta - cos theta/sin theta#
How do you simplify #(1-cos^2x)(csc x)#? - Socratic
How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle
How do you differentiate #y=cos((1-e^(2x))/(1+e^(2x)))#? - Socratic
6664 views around the world You can reuse this answer ...
What is the integral of [ (1+cos^2(x)) / sin(x) ] dx? - Socratic
Aug 6, 2016 · #int (1+cos^2(x)) / sin(x) dx# is just crying out for the application of the Pythagorean identity #=int (1+ color(red)(1 - sin^2 x)) / sin(x) dx#
How do you solve #sin^2(x) - cos^2(x) = 1 + cos(x)#? - Socratic
Oct 19, 2015 · How do you find all the solutions for #2 \sin^2 \frac{x}{4}-3 \cos \frac{x}{4} = 0# over the